Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR.
نویسندگان
چکیده
A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 +/- 1.5) x 10(8) copies of the 16S rRNA gene/ micromol of Cl(-) (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate (q) was determined to be 7.8 x 10(-10) micromol of Cl(-) (copy(-1) day(-1)), indicating a maximum growth rate of 0.4 day(-1). These average growth yield and q values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day(-1)) and no-growth (0.09 day(-1)) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies.
منابع مشابه
Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions.
The reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE) at contaminated sites often results in the accumulation of cis-1,2-dichloroethene (DCE) and vinyl chloride (VC), rather than the nonhazardous end product ethene. This accumulation may be caused by the absence of appropriate microorganisms, insufficient supply of donor substrate, or reaction kinetic limitations. He...
متن کاملTranscriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment.
Dynamic changes in the transcriptional expression of the tceA gene, which encodes a trichloroethene reductive dehalogenase, were characterized in a Dehalococcoides-containing microbial enrichment culture. Expression was quantified by real-time PCR as the number of tceA transcripts per tceA gene. Expression of tceA increased 40-fold after chlorinated ethene-starved cells were exposed to trichlor...
متن کاملReductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195.
"Dehalococcoides ethenogenes" 195 can reductively dechlorinate tetrachloroethene (PCE) completely to ethene (ETH). When PCE-grown strain 195 was transferred (2% [vol/vol] inoculum) into growth medium amended with trichloroethene (TCE), cis-dichloroethene (DCE), 1,1-DCE, or 1,2-dichloroethane (DCA) as an electron acceptor, these chlorinated compounds were consumed at increasing rates over time, ...
متن کاملComparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
Reductive dehalogenation of tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC) was examined in four cultures containing Dehalococcoides-like microorganisms. Dechlorination and growth kinetics were compared using a Monod growth-rate model for multiple electron acceptor usage with competition. Included were the Victoria mixed culture containing D...
متن کاملQuantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate.
A novel Dehalococcoides isolate capable of metabolic trichloroethene (TCE)-to-ethene reductive dechlorination was obtained from contaminated aquifer material. Growth studies and 16S rRNA gene-targeted analyses suggested culture purity; however, the careful quantitative analysis of Dehalococcoides 16S rRNA gene and chloroethene reductive dehalogenase gene (i.e., vcrA, tceA, and bvcA) copy number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 2 شماره
صفحات -
تاریخ انتشار 2003